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Magnetic reconnection at an X-type neutral point of a two-dimensional magnetic
field is studied in an incompressible viscous resistive fluid whose flow is assumed
to be slow enough that its inertia is negligible. In both the ideal and resistive
magnetohydrodynamic approximations current singularities appear at the X-point
and along the separatrices. It is shown here analytically that the combined effect
of viscosity and resistivity can resolve these singularities with the flow crossing the
separatrices. A wide class of exact solutions describing the structure of the flow and
current density distribution is found. The results suggest that reconnection may occur
with localized distributions of strong current density restricted to finite regions.

1. Introduction
Magnetic reconnection is a key fundamental process in magnetohydrodynamics

(MHD) and thereby of importance for basic fluid mechanics. The analogy between
the behaviour of a magnetic field in MHD and the vorticity of a non-magnetic fluid
(Elsasser 1946) gives it an added interest, although of course the analogy is not exact
since the velocity in the nonlinear vector diffusion equation relates differently to the
magnetic field and the vorticity (Moffatt 1978).

In a magnetofluid of large magnetic Reynolds number, which is the norm in solar
and astrophysical plasmas as well as in the Earth’s magnetosphere and laboratory
fusion machines, the magnetic field is frozen to the fluid and moves everywhere
with it. The exception in two dimensions is at X-type neutral points where the
magnetic field vanishes and extremely large magnetic gradients and asociated electric
currents are formed, so that the magnetic field lines can slip through the fluid and
reconnect. This leads to a change of topology of the magnetic field and a conversion
of magnetic energy into other forms such as heat and kinetic energy. As a result,
magnetic reconnection is thought to be at the core of many dynamic processes
in the universe, including solar flares, mechanisms for heating the Sun’s corona,
geomagnetic substorms and tokamac disruptions. Understanding it is therefore of
major significance for these physical processes. However, it is inherently a highly
nonlinear problem which present a tough challenge for applied mathematicians.
Indeed, so far, no analytical solutions have yet been discovered with the expected
physical feature of an isolated diffusion region and current spike localized around the
magnetic null point where the reconnection is taking place. It is the purpose of this
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article to present such solutions with the physically reasonable property of possessing
a continuous pressure and to show how more general solutions with continuity up to
any derivative in the pressure may be constructed.

1.1. Previous history of the problem

The problem considered in this article has an interesting history. It started when
Syrovatskii (1979) analysed slow (inertialess) steady flows of plasma in the vicinity
of a magnetic X-point, using the so-called ‘strong magnetic field approximation’ for
ideal magnetohydrodynamics (MHD). In particular, he found that such flows are
necessarily singular at the separatrices, i.e. for any small velocity of the flow on the
boundary, the velocity at the separatrices must be infinitely large to support the
constancy of pressure along field lines. He considered this result as evidence that,
even for very slow plasma movement far from an X-point, the resulting rarefaction of
plasma near this point cannot be compensated by a corresponding inflow of material.

Recently, Craig & Rickard (1994) have shown in a similar but resistive and in-
compressible approximation that one can find a steady regular solution for the fluid
motion near the X-point configuration provided one supposes an absence of flow
across the separatrices, which is not the usual property of classical reconnection solu-
tions where magnetic flux is transported across the separatrices. These solutions have
the undesirable feature that current concentrations extend out along the separatrices
to infinity. Then it was proved by Priest et al. (1994) as an anti-reconnection theorem
that the absence of trans-separatrix flow is an inherent property of inertialess resistive
inviscid flows. A necessary condition under which this theorem breaks down for
nonlinear flows has been found by Neukirch & Priest (1996).

Can, however, solutions for magnetic reconnection with non-vanishing slow flow
across the separatrices be obtained when both resistivity and viscosity are included?
The first attempt in this direction (Priest et al. 1994) was only partially successful,
since it was realized at the time that the resulting analytical expression for the stream
function has a discontinuity in the third derivative across the separatrices, which is
not physically acceptable, since it implies a corresponding discontinuity in pressure
distribution. We demonstrate here that such a mathematically weak discontinuity can
be resolved by the combined effect of resistivity and viscosity. A short summary has
been given in Titov & Priest (1997), but here we present a full account of the necessary
details and several possible generalizations.

1.2. Basic equations

We shall study slow MHD flows of a resistive and viscous incompressible fluid in an
X-type magnetic configuration. Suppose that these flows are slow enough that their
influence on the magnetic field is a small inertialess perturbation of some unperturbed
magnetostatic configuration. As the latter unperturbed state we adopt a potential
magnetic field in the neighbourhood of a two-dimensional null point characterized at
a distance Le by magnetic field Be, so that the unperturbed dimensional field is

B̃0 ≡ (B̃0x, B̃0y) = Be/Le (−x̃, ỹ)

in a system of coordinates for which the axes coincide with the separatrix field lines.
It transpires that these (x̃, ỹ)-coordinates are more suitable for studying the problem
than the conventional (x̃′, ỹ′)-coordinates (figure 1), and so only the final results will
be presented in (x̃′, ỹ′)-coordinates.

Slow steady MHD flow of a uniform incompressible fluid with density ρ̃, magnetic
permeability µ, resistivity η and kinematic viscosity ν can be described by linearized
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Figure 1. The convenient (x, y) and conventional (x′, y′) systems of dimensionless coordinates used
for studying MHD flow near an X-point. The field lines of the unperturbed magnetic configuration
are shown by thick grey curves, while thin dashed lines represent the streamlines of an ideal MHD
flow perturbing such a configuration.

equations of motion, incompressibility and Ohm’s law for the pressure p̃0 + p̃, velocity
ṽ, magnetic field B̃0 + B̃ and current density j̃ = µ−1 ∇̃× B̃ as follows:

0 = −∇̃p̃+ j̃ × B̃0 + ρ̃ν∇̃2ṽ, (1.1)

∇̃ · ṽ = 0, (1.2)

Ẽ + ṽ × B̃0 = ηj̃ . (1.3)

Here the subscript 1 denoting perturbed values is omitted for brevity. The electric
field Ẽ has a uniform value, which can be expressed in terms of the speed ve and
magnetic field Be at a sufficiently large distance Le from the X-point where the
frozen-in flux condition is fulfilled, so that Ẽ = veBeẑ. Owing to the assumed slowness
of the flow (the Alfvén Mach number MA ≡ ve/vAe � 1) the inertial term in the
equation of motion (1.1) has been neglected. Also the Lorentz force (' j̃ẑ × B̃0) is
due to the interaction of the perturbed current density j̃ with the potential field B̃0;
the induction electric field (ṽ × B̃0) in Ohm’s law (1.3) is caused by the interaction of
the flow with the same field.

Owing to the incompressibility condition (1.2), the velocity ṽ may be expressed in
terms of a stream function ψ̃ as

ṽ = ∇̃× (ψ̃ẑ). (1.4)

So, after substituting (1.3) and (1.4) into (1.1) and then taking the curl of the obtained
equation, one can derive the following linear dimensionless equation for the stream
function ψ (Priest et al. 1994):

(B0 · ∇)2ψ − ε∇2∇2ψ = 0. (1.5)

Here B0 = B̃0/Be, ∇ = Le ∇̃, ψ = ψ̃/(veLe) are dimensionless variables (as are
j = j̃ µLe/(MABe), p = p̃ 2µ/(MA B

2
e ), E = Ẽ/(veBe)) and the dimensionless parameter

ε =
1

ReRm
≡ νη

µ(Le vAe)2
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is defined in terms of the ordinary (Re = LevAe/ν) and magnetic (Rm = µLevAe/η)
Reynolds numbers, both based on the Alfvén speed vAe = Be/(µρ̃)1/2. The current den-
sity j = jẑ determined by Ohm’s law (1.3) acquires as a result of these transformations
the following dimensionless form:

j/Rm = 1 + B0 · ∇ψ. (1.6)

If the viscosity is negligible so that ε � 1, then (1.5) becomes simply

(B0 · ∇)2 ψ = 0.

After one integration along B0 this leads to (1.6) in which, however, the current
density j is now not arbitrary but is constant along field lines, i.e. j ≡ j(A0), where

A0 = −xy

is the unperturbed dimensionless flux function corresponding to B0.
A subsequent integration of (1.6) along B0 with the condition of flow symmetry

(requiring that ψ = 0 at x = y) yields the resistive solution

ψ = 1
2

(
1− R −1

m j(A0)
)

log |x/y| . (1.7)

In the limit of small resistivity, i.e. Rm →∞, this reduces to the ideal solution

ψ = 1
2

log |x/y| (1.8)

such that the velocity components

vx = −1/(2y) and vy = −1/(2x)

become singular at the separatrices y = 0 and x = 0, respectively, and therefore at
the X-point itself.

At first sight, it may be thought that a regular solution can be obtained from
the inviscid resistive expression (1.7) by a suitable choice of the current distribution
j(A0). This possibility has been explored by Craig & Rickard (1994), who considered
electric currents that are highly concentrated near the separatrices. However, in this
case there is only a simple magnetic diffusion (with no advection) of magnetic flux
across the separatrices – a result that has been derived in a general form by Priest et
al. (1994) as the so-called anti-reconnection theorem.

So let us turn now to the combined effect of viscosity and resistivity described
by (1.5). We shall for simplicity assume that the asymptotic form in the non-ideal
case is the ideal solution (1.8) except for the narrow regions around the separatrices.
This is a natural asymptotic form for physically interesting solutions, but there may
well be other solutions with different (non-ideal) asymptotics. Numerical solutions
(as reviewed in Priest 1996) suggest that this is a reasonable assumption at slow and
intermediate reconnection rates, but that for fast reconnection the central current
sheet becomes a sheet which bifurcates to give two standing shock waves in a manner
that is analogous to boundary layer separation. Such a highly complex behaviour is
not amenable to the exact analytical treatment that we are attempting here. It should
be noted first that the parameter ε in (1.5) may be absorbed by a simple change of
variable such that

x = ε1/4 x̄, y = ε1/4 ȳ. (1.9)

Applying this transformation when ε 6= 0 (as assumed in this paper) to (1.5) and then
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omitting the bars, we obtain(
x
∂

∂x
− y ∂

∂y

)2

ψ =

(
∂2

∂x2
+
∂2

∂y2

)2

ψ (1.10)

as our basic equation whose solutions give those of (1.5) by a simple rescaling of
variables in accord with (1.9). Thus the solutions will be universal in the sense that
they hold for all values of ε. It may be noted that at large values of x̄ and ȳ
(corresponding to small ε) the right-hand side of (1.10) becomes small and we recover
the ideal MHD equation.

Note that (1.10) is elliptic, since its highest (fourth-order) derivatives form a
biharmonic operator, while its lower-order derivatives do not influence the ellipticity
of the equation. So according to the general theory of elliptical equations (see e.g.
Bers, John & Schechter 1964) it is possible to formulate for (1.10) in some domain
D an internal Dirichlet problem with given values of the stream function ψ and its
normal derivative ∂ψ/∂n on the boundary ∂D. We shall prove in Part 2 of this article
(Titov & Priest 1997b) that such a boundary-value problem can indeed be formulated
and develop an approximate method for solving this problem. In this Part, however, it
is worth noting that, although (1.10) is a fourth-order partial differential equation, the
fact that it is elliptic means that the general global solution involves only two arbitrary
functions rather than four. Similarly, the solution of Laplace’s equation (of second
order) depends on only one free function (which may be imposed on a boundary).

2. A universal family of exact solutions resolving the separatrix singularity
2.1. Exact solution partially resolving the separatrix singularity

Let us first try to find a particular analytical solution to equation (1.10) which tends
asymptotically to the ideal solution (1.8) far from the separatrices. It is instructive to
note that the ideal solution can be written in an additively separable form

ψ = 1
2

log |x| − 1
2

log |y|. (2.1)

The variables x and y are also separated in equation (1.10), since the coefficients of the
derivatives in the operator B0 · ∇ = y ∂/∂y− x ∂/∂x are just the appropriate variables
of differentiation. This important intrinsic property of equation (1.5) is manifested
only in the present coordinate system with axes parallel to the separatrices and is
masked in other systems.

Both these observations prompt us to search for a particular solution of (1.10) in
the additively separable form:

ψ = f(x)− g(y). (2.2)

Substituting this expression into (1.10), we find that the function f(x) must satisfy

x2 d2f

dx2
+ x

df

dx
=

d4f

dx4
. (2.3)

Although this equation may generally contain an arbitrary constant as an additional
term, for simplicity we set it here equal to zero, which does not affect our final
conclusions (see Appendix C). The same equation is obtained for the function g(y),
so the assumed form of solution (2.2) is compatible with our basic equation (1.10).
In other words, any pair of functions f(x) and g(y), satisfying (2.3) and being
superimposed in accord with (2.2), determines an exact solution of (1.10). Such
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solutions describe a linear superposition of two unidirectional fluid flows parallel to
the separatrices. Generally such flows are different, since the functions f(x) and g(y)
are not necessarily identical. However, we shall here assume them to be the same so
as to give the simplest symmetrical flows.

Equation (2.3) has appeared already in Priest et al. (1994) as an equation describing
an approximate self-similar flow at the separatrix layer with x being a self-similar
variable rather than the x-coordinate. One can see now, however, that its significance
is surprisingly much wider – in fact it describes a family of exact solutions (2.2) of
equation (1.10). In spite of the differences in meaning and in independent variables,
we can use all the results obtained by Priest et al. (1994) about the properties of the
solutions of equation (2.3).

First of all, there is a single solution F(x) of (2.3) which has the desired logarithmic
asymptotics, i.e. F(x)→ 1

2
log |x| as x→∞. It may be written explicitly as

F(x) =
1

4

∫ x

0

ξ I1/4(
1
4
ξ2)K1/4(

1
4
ξ2) dξ, (2.4)

where I1/4 and K1/4 are modified Bessel functions of order one-quarter. Thus the
solution of the form (2.2) with asymptotics (2.1) is simply

ψ = F(x)− F(y). (2.5)

When substituted into Ohm’s law (1.6) it yields a current density

j/Rm = J(x) + J(y), (2.6)

where

J(x) = 1
2
− 1

4
x2 I1/4

(
1
4
x2
)
K1/4

(
1
4
x2
)
,

and J(y) is the same function of y.
Since the above solution is a linear superposition of two unidirectional flows, it

may be well understood with the help of the stream function F(x) of one of the
flows represented in figure 2(a). This demonstrates that the logarithmic singularity of
the ideal MHD flow (2.1) at the separatrix x = 0 (or y = 0) is indeed resolved by
the combined effect of resistivity and viscosity which is manifested in the appearance
of separatrix current spikes. When superimposed, these spikes give the total current
distribution shown in figure 2(b). The results are qualitatively the same as in Priest et
al. (1994), whose approximate solution behaves in a similar way. Moreover, near the
separatrices and far from the origin both solutions become asymptotically identical,
so the above exact solution (2.5) is approximated by the previous solution.

Even though the solution (2.5) is exact, it has the same disadvantage as the approx-
imate solution of possessing a discontinuous third derivative across the separatrices.
This is because both of them are constructed on the basis of the function (2.4) which
has a jump in F ′′′ at the origin. Such a jump implies a discontinuity in the tangential
component of the viscous force ρ̃ν∇2v at the separatrices, which in turn means a
corresponding discontinuity of pressure there. This fact is explicitly demonstrated by
the dimensionless expression for the pressure perturbation

p = (ν/η)1/2
[
−xy + y

(
x2 F ′(x)− F ′′′(x)

)
+ x

(
y2 F ′(y)− F ′′′(y)

)]
,

which can be obtained from (1.1) with the help of (2.4)–(2.6) and the assumption
that MA B

2
e /µ is a scale unit for the perturbed pressure. Thus the above visco-resistive

solution (2.5) resolves the singularity in the ideal MHD flow (2.1) only partially, i.e.
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Figure 2. (a) The profiles of the stream function F(x) (thin solid curve) and corresponding current
density J(x) (thick solid curve) describing a visco-resistive unidirectional shear flow, which has a
partially resolved logarithmic singularity at x = 0 of the ideal MHD flow. The asymptotic behaviour
( 1

2
log x + 0.097) of F(x) is shown by the dashed curve. (b) The current density distribution in (x′,

y′)-coordinates for the simplest visco-resistive flow as a superposition of the two one-dimensional

distributions J
(
(x′ − y′)/

√
2
)

and J
(
(x′ + y′)/

√
2
)

parallel to the separatrices x′ = y′ and x′ = −y′,
respectively.

to within this weak discontinuity. So we need to seek other more physical solutions
with better smoothness properties.

2.2. Physically acceptable family of piecewise analytical solutions

Formally the above-mentioned discontinuity means that F(x) satisfies

x2 d2f

dx2
+ x

df

dx
=

d4f

dx4
+

2

π
Γ
(

3
4

)2
δ(x) (2.7)
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rather than (2.3), where the additional inhomogeneous term is the Dirac delta-function
δ(x) with a coefficient depending on the value of the gamma function Γ(x) at 3/4. This
term provides the weak discontinuity which may be interpreted physically as a forced
vortex sheet at the separatrix x = 0. One may expect to obtain the desired smooth
solution if this infinitesimally thin sheet spreads somehow into a corresponding layer
of a finite thickness. This implies formally that the equation determining the flow must
be inhomogeneous like (2.7) but having instead of δ(x) some smooth and localized
function. So the question is whether such an equation may be derived from (1.10) or
not.

The above consideration gives a hint of how to try to answer this question. Indeed,
it suggests that the assumption about the unidirectional form of the flow leads
inevitably to the presence of a forced vortex layer, which, however, can be described
by terms that are additional to the unidirectional form (2.5). So one needs to give
more freedom to the fluid motion by generalizing this form.

We achieve success by seeking a solution in the quasi-quadratic form

ψ = f0(x) + f1(x) 1
2
y2 − f0(y)− f1(y) 1

2
x2, (2.8)

where the unknown functions f0 and f1 represent, respectively, the unidirectional and
non-unidirectional parts of the flow connected with one another by the following
system of equations:

x2 d2f0

dx2
+ x

df0

dx
=

d4f0

dx4
+ 2

d2f1

dx2
, (2.9)

x2 d2f1

dx2
− 3x

df1

dx
+ 4f1 =

d4f1

dx4
, (2.10)

which is obtained by substituting (2.8) into (1.10). One can see from (2.9) that the
equation for the unidirectional component f0 really has the desired form if the second
derivative f′′1 (x) defining the forced vorticity distribution at the separatrix layer is a
localized function. The details of how the solutions f0(x) and f1(x) may be obtained
are given in Appendices A and B, while here we just present a sketch of this non-trivial
procedure.

Let us formulate first the minimal requirements on f0 and f1 to determine physically
acceptable solutions of the form (2.8):

(i) the function f0(x) must have logarithmic asymptotics, i.e. f0(x) ∼ 1
2

log |x| as
|x| → ∞;

(ii) the function f1(x) must be asymptotically vanishing, i.e. f1(x)→ 0 as |x| → ∞;
(iii) both functions f0(x) and f1(x) must be continuous up to and including their

third derivatives, i.e. f0(x), f1(x) ∈ C3.

Thus the requirements (i) and (ii) guarantee the same asymptotic behaviour far
from the separatrices as the ideal solution, while the requirement (iii) provides the
physically acceptable degree of smoothness for the solution.

Since equation (2.10) contains only f1, it is natural to solve it first. Note that
differentiating this equation twice leads again to equation (2.3) for the new unknown
f(x) = f′′1 (x). So we can use again our previous knowledge about the general solution
of (2.3) (Priest et al. 1994) to find this unknown:

d2f1

dx2
=

∫ x

0

h(ξ) dξ + c4, (2.11)
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Figure 3. The profiles of the piecewise analytical odd function h̃(x) ≡ f′′′1 (x) (thick curve) and even
function f′′1 (x) (thin curve) which determine a physically acceptable solution; the smoothness of the
functions breaks down at the points x0 = 0, |x1| = 1.0 and |x2| = 2.2933.

where

h = c1u
2
1 + c2u

2
2 + c3u1u2, (2.12)

u1 = ξ1/2 I1/4(
1
4
ξ2), u2 = ξ1/2 K1/4(

1
4
ξ2) (2.13)

at positive ξ and the values ci, i = 1, . . . , 4, are arbitrary constants. We can try to
determine them to satisfy the requirements (i)–(iii). The corresponding analysis shows
that it is impossible to do so in the whole range of ξ. However, one can construct a
piecewise smooth function

h̃ = ci1u
2
1 + ci2u

2
2 + ci3u1u2, (2.14)

where i = 1, 2 or 3 when, respectively, ξ belongs to the interval [0, x1], (x1, x2]
or (x2, ∞); for negative ξ the function h̃(ξ) is assumed to be continued as an odd
function. The sets of constants cij are here chosen so that, first, h̃ has a discontinuity

in h̃′ and therefore in fiv
1 at any two different points x1 and x2 and, second, the

requirements (ii) and (iii) are satisfied. An example of such a function together with
the corresponding f′′1 is shown in figure 3. In this example we have put x1 = 1.0 and
x2 = 2.2933; the value of x2 is chosen here for simplicity so that c3

2 = 0 and, since

c3
1 = c3

3 = 0 (see Appendix A), h̃(ξ) ≡ 0 at ξ > x2.
Integrating (2.11) twice yields

f1(x) =
1

2

∫ x

0

(x− ξ)2 h̃(ξ) dξ + c4
1
2
x2 + f′1(0) x+ f1(0), (2.15)

where we have used Cauchy’s formula for repeated integration to reduce the three-
fold integral to a single integral (e.g. Oldham & Spanier 1974, p. 38). The values f1(0)
and f′1(0) here are

f1(0) = 1
4
h̃′(0), (2.16)

f′1(0) = h̃′′(0), (2.17)

which may be verified by substituting (2.15) into (2.10), Taylor expanding about x = 0
and comparing the coefficients of the corresponding powers of x.
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Figure 4. (a) The stream function components f0(x) (thick solid curve) and f1(x) (thin solid curve),
respectively, for unidirectional and non-unidirectional parts of the flow in the particular case of
h̃(x) shown in figure 3. The asymptotic behaviour ( 1

2
log x + 0.5343) of f0(x) is represented by a

dashed curve. (b) The components of the current density j0(x) (thick curve) and j1(x), respectively,
for unidirectional and non-unidirectional parts of the flow in the particular case of h̃ shown in
figure 3.

On the basis of (2.14)–(2.17) and the requirements (i)–(iii) one can derive a linear
system of equations for the constants appearing in (2.14). It is not difficult then to
calculate these constants and to transform the expression (2.15) to the form (see
Appendices A and B)

f1(x) = −1

2

∫ ∞
x

(x− ξ)2 h̃(ξ) dξ.

This expression makes it clear that the function f1(x) is indeed localized if one
assumes an exponential decay of h̃ or a complete vanishing at x > x2. The resulting
solution f1(x) in the above particular case (figure 3) with f1(x) = 0 at x > x2 is shown
in figure 4(a).

The appropriate solution f0(x) is also shown in the same figure; it is obtained from
(2.9) with the help of the corresponding Green’s function G(ξ, x) in the usual way:

f0(x) = 2

∫ +∞

−∞
f′′1 (ξ)G(ξ, x) dξ. (2.18)
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This Green’s function is determined from an inhomogeneous equation similar to (2.7)
but with δ(x−ξ) on the right-hand side. All the necessary details of its determination
and properties are discussed in Appendix B. Here we only note that G(ξ, x) has a
logarithmic asymptotic behaviour at large x. Owing to this property any solution
f0(x) based on a localized solution f1(x) has the required logarithmic asymptotics at
infinity.

The current density distribution is found by substituting (2.8) into (1.6) and may
be transformed to the form

j/Rm = j0(x) + 1
2
j1(x) y2 + j0(y) + 1

2
j1(y) x2, (2.19)

where

j0(x) = 1
2
− x f′0(x), (2.20)

j1(x) = 2 f1(x)− x f′1(x). (2.21)

The resulting profiles of j0(x) and j1(x) for the above example (figure 3) are shown
in figure 4(b), which demonstrates that both components of the current density vanish,
as required, far from the origin. The value j1(x) is a monotonic negative function,
while j0(x) is non-monotonic with a much more noticeable region of reverse current
than the similar value J(x) (see figure 2a) in the previous solution (2.6). This provides
a rather non-trivial distribution of the current density (2.19) at the separatrix layer
(figure 5a). In the central region there is a nearly axisymmetrical current spike which
turns gradually into a region of reverse current growing in value quadratically with
increasing distance from the centre along the separatrices. Physically, the structure
in the middle of the separatrix layer allows the viscous stress of the moving fluid
tangential to the separatrices to be balanced by a pressure gradient, since the tangential
component of the Lorentz force vanishes at the separatrices. However, this also
produces a normal pressure gradient which is in turn counterbalanced by the resulting
Lorentz force whose direction is consistent with the presence of reverse current at the
separatrices. These qualitative arguments are in agreement with the real distribution
of the (dimensionless) perturbed pressure which can be determined from (1.1), using
(2.8) and (2.19)–(2.21), to be

p =

(
µν

η

)1/2 [
−xy + y

(
x2 f′0(x)− f′′′0 (x)− f′1(x)

)
+ x

(
y2 f′0(y)− f′′′0 (y)− f′1(y)

)
+ 1

6
y3
(
x2 f′1(x)− f′′′1 (x)− 2x f1(x)

)
+ 1

6
x3
(
y2 f′1(y)− f′′′1 (y)− 2y f1(y)

)]
,

where MA B
2
e /µ is used again as a scale unit. The corresponding distribution of

pressure (see figure 5b) confirms the above arguments that the reverse currents in the
middle of the separatrix layers are necessary elements of the structure for the present
flow geometry.

We can estimate a posteriori the region of applicability of our solution by com-
parying the neglected inertia term with the Lorentz force term (the left-hand side of
(1.10)). The corresponding procedure includes dimensionalizing, rescaling (1.9), and
substituting (2.8) into these terms; then our results can be evaluated at the separatrix
layer, say, along the x-axis far from the origin. Such an analysis shows that the dimen-
sional inertia term −(v · ∇)∇2ψ ≡ ẑ · ∇ψ × ∇(∇2ψ) has a leading term of the order of
MA Rex

3 (f1(y) f′′′1 (y) + f′ 21 (y))/2. The same procedure for the left-hand side of (1.10)
yields x2 (3y f′1(y)− y2 f′′1 (y)− 4f1(y))/2. In both expressions the factors depending on
y are of the order of unity in the separatrix layer, so the inertial effect is negligible
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Figure 5. (a) The current density distribution in perspective for the flows described by the
quasi-quadratic stream function. (b) The corresponding pressure distribution whose variation is
depicted by the distribution with light and dark grey half-tones representing, respectively, the higher
and lower values of pressure; a sharp dark border of this distribution outlines the regions of lowest
pressure, which are filled by minuses, while the regions of highest pressure are filled by pluses.
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for MA Rex � 1. The value x = 1/ε1/4 corresponds to the dimensional size Le of the
X-point neighbourhood, and so we obtain the inequality MA Re/ε

1/4 � 1 or

Re �M
−4/5
A R1/5

m

which determines the range of dimensionless parameters for which our solution is
applicable in a region of size Le.

2.3. Other possible generalizations of piecewise analytical solutions

The solutions of §2.2 have the disadvantage that the fourth-order derivative of the
stream function possesses discontinuities and therefore so does the pressure gradient.
However, as indicated in the last paragraph of Appendix A, our method enables
us to construct smoother solutions by an appropriate increase of the number of
patching points. This is because introducing an extra such point introduces three
additional arbitrary constants in the expression for the function h̃(x), which smoothly
interpolates the third derivative of some coefficient in the solution between adjacent
patching points. So one of these constants is fixed by the requirement of continuity
(or patching) of h̃(x), while the other two can be used for making the first and higher
derivatives of h̃(x) continuous at the patching points. Thus, the degree of smoothness
of the solution constructed in this way depends on the number of such points – the
larger the number, the better the smoothness of the resulting solution. For example,
introducing two extra patching points, say, x3 and x4, would make our quasi-quadratic
solution smooth up to its fourth derivatives, which means that the pressure gradient
would be continuous.

In this approach it is important to note two points. First, there are no evident
restrictions on the positions of the patching points; however, physically the visco-
resistive effect is likely to be effective only on a length scale of order unity, so
the coordinates of the patching points must also lie in the same region. Second, the
corresponding continuity conditions form a linear inhomogeneous system of equations
for the free constants. So one can expect that in the generic case a unique solution is
obtained for fixed positions of the patching points. Both of these have been confirmed
by other examples that we have computed.

A large freedom in the positions of the patching points is also understandable as
follows. A solution of the basic equation (1.10) is uniquely determined in a finite
region, such as a circle, by prescribing values of the stream function and its normal
derivative on the boundary of the region. On the other hand, our family of solutions
is determined from the asymptotic requirement that they describe ideal MHD flows
outside the separatrix layers. This requirement fixes the boundary conditions on most
of the boundary but leaves them free close to the separatrices. Owing to this freedom
the positions of the patching points within the separatrix layers are relatively arbitrary.

The finite smoothness of the resulting solutions is due to the assumed Ansatz –
its relatively simple form turns out to be too restrictive for representing infinitely
differentiable solutions with the proper asymptotic behaviour. However, their value
lies in their simplicity and that fact that the addition of extra patching points increases
their degree of smoothness.

It is unlikely that the patching points have any particular physical meaning, except
that they are the locations where the smoothness of the vorticity distribution is finite.
They are similar to the nodes in cubic spline interpolation, where the cubic parabola
corresponds in our case to the interpolating function h̃(x). Such nodes have no
particular physical meaning, but this does not reduce the value of the spline method.
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The previous consideration suggests that we may seek a more general class of exact
solutions in the quasi-polynomial form

ψ =

n∑
k=0

(
fk(x) y2k − fk(y) x2k

)
/(2k)!. (2.22)

Substituting (2.22) into (1.10), one can derive in a similar way as before a system of
equations for the functions fk(x), namely

x2 d2fk

dx2
+ (1− 4k)x

dfk
dx

+ 4k2fk =
d4fk

dx4
+ 2

d2fk+1

dx2
+ fk+2, (2.23)

x2 d2fn−1

dx2
+ [1− 4(n− 1)]x

dfn−1

dx
+ 4(n− 1)2fn−1 =

d4fn−1

dx4
+ 2

d2fn

dx2
, (2.24)

x2 d2fn

dx2
+ (1− 4n)x

dfn
dx

+ 4n2fn =
d4fn

dx4
, (2.25)

where k = 0, . . . , n − 2. Each of these equations generally contains an additional
arbitrary constant term which for simplicity is put equal to zero here. Its presence
probably would yield as before (see Appendix C) only some addition to fk(x) that
grows at infinity.

Physically acceptable solutions of the above system must satisfy two major re-
quirements: first, the functions fk(x), k = 1, . . . , n, must be localized, i.e. fk(x)→ 0 as
|x| → ∞, and, second, they must be sufficiently smooth that at least fk(x) ∈ C3. These
requirements provide the necessary smoothness and logarithmic asymptotics for the
function f0(x).

The structure of (2.23)–(2.25) implies that we determine the unknowns fk(x) in
descending order of k, starting from k = n: one needs first to solve (2.25), then
substitute fn(x) into (2.24) and solve it for fn−1(x), then substitute again fn(x) and
fn−1(x) into (2.23) at k = n − 2 and solve it for fn−2(x) and so forth, until k = 0. It
is interesting that at each step of this procedure the homogeneous part of the kth
equation (k = 1, . . . , n) can be reduced by 2k-fold differentiation to the same form as
(2.3) but with f = d2kfk/dx

2k ≡ f(2k)
k , so that (2.25), for instance, becomes

x2 d2f(2n)
n

dx2
+ x

df(2n)
n

dx
=

d4f(2n)
n

dx4
. (2.26)

Then one can apply again the method described in § 2.2, which implies that the
general solution of (2.26) may be expressed in terms of the function h̃(ξ) similar to
(2.14). Since the number of points xi where the smoothness of h̃(ξ) breaks down may
be as large as we like, we may always take enough of them to determine the fitting
constants in h̃(ξ) to satisfy the above requirements of smoothness and asymptotic
behaviour. In particular, the solution fn(x) can be localized and written in a form
similar to (2.18):

fn(x) = − 1

(2n)!

∫ ∞
x

(x− ξ)2nh̃(ξ) dξ. (2.27)

In the case of k = n− 1, we then obtain

x2 d2f
(2n−2)
n−1

dx2
+ x

df(2n−2)
n−1

dx
=

d4f
(2n−2)
n−1

dx4
+ 2f(2n)

n ,

which can be solved for fn−1, using the Green’s function (B 14) and Cauchy’s formula
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for repeated integration. This may be performed in a similar way for any other k,
and so, in principle, the solutions of (2.23)–(2.25) may be expressed in terms of the
corresponding integrals containing h̃(ξ) and G(ξ, x).

One can see now that the above general method has already been applied in
§ 2.2 to construct the physical solution in the particular case of n = 1. It is not
so hard to apply it for n = 2, but unfortunately for larger n the method becomes
rather complicated because of the increasing number of repeated integrations and
asymptotic conditions to be satisfied.

However, some important conclusions can be drawn here without computing
particular examples, just by appealing to the quasi-polynomial form of these solutions:
as the nth term in (2.27) dominates the rest sufficiently far from the origin along the
separatrices, the corresponding absolute value of current density monotonically grows
there or, in other words, it is unbounded in the whole plane. On the other hand, in
a given finite region it is quite possible to obtain localized current distributions with
values completely or almost vanishing near the boundary. This is certainly true in the
simplest case of quasi-quadratic solutions (see § 2.2) and seems easier for the quasi-
polynomial solutions of higher orders since they have more freedom for variations
at small and intermediate distances from the centre of the configuration. Moreover,
taking into account the wideness of this class of solutions, one can generally expect
that the latter is a characteristic feature of physically acceptable solutions.

3. Summary and discussion
In this paper the analytical theory of slow magnetic reconnection at a neutral X-

point of a two-dimensional magnetic field has been developed for the case of steady
incompressible fluid flows when both resistivity and viscosity are important. Previous
authors have only considered vanishing resistive and viscous effects (Syrovatskii
1979) or vanishing viscous effects (Graig & Rickard 1994). In the first case of
ideal magnetohydrodynamics the stream function of any non-trivial flow contains a
logarithmic singularity at the separatrices.

It is more non-trivial, however, that in the second case the singularity is resolved by
resistivity only by flows with no advection across the separatrices. If trans-separatrix
flows are desired, they lead again to the same singularities (Priest et al. 1994). The
simplest ways to try and avoid them is to include either nonlinear inertial effects or
fluid viscosity. In many cases (such as fast reconnection (Priest & Forbes 1986)) it
is expected that the nonlinear effects become important mainly in the central region,
but for slow enough reconnection a linear approach (see § 1.2) may be appropriate.

We have proceeded here to try and avoid the anti-reconnection theorem by including
viscous effects, which Priest et al. (1994) had earlier started to explore. That first
attempt was only partially successful, since it enabled us to find an approximate
solution having a mathematically weak singularity, namely one with a discontinuity
in the third derivative of the stream function across the separatrix. It lead, however,
to a discontinuity in the corresponding pressure distribution, which was, of course,
not physically acceptable.

In this connection we have found in § 2.1 an exact solution that uses the same
function as our previous approximate one but in a separable rather than a self-
similar form. Both of them have the same third-order discontinuity, but the new
solution leads to an explanation of the origin of such a discontinuity and thereby
suggests a technique for smoothing it away. Indeed, the solution represents simply a
superposition of two unidirectional flows parallel to the separatrices, and so effectively
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it is the implicit one-dimensionality that causes the above discontinuity, since such
an Ansatz turns out to be much too restrictive to satisfy both the proper asymptotic
condition at infinity and the smoothness condition at the separatrix.

This point of view is confirmed and developed in § 2.2 where we have proved that,
if the fluid is allowed to move more ‘freely’, assuming a quasi-quadratic form for
the stream function, it is possible to obtain a physically acceptable solution with the
desired degree of smoothness and asymptotic behaviour. An explicit example of such
a solution demonstrates that it differs significantly from the previous exact solution
most of all in the current density distribution. Although it is concentrated as before
near separatrices, its central spike now decays more rapidly along the separatrices and
turns gradually into infinite regions of reverse current growing in value quadratically
with distance, instead of stabilizing at some constant value as in the first solution.

It is shown then in § 2.3 that a solution of quasi-quadratic form is just a very
particular representative of a wide class of exact analytical solutions having a quasi-
polynomial form. The characteristic feature of all of them is that the corresponding
current density monotonically grows in value sufficiently far from the centre of the
configuration along the separatrices, which means that the distributions of current
density for such solutions are unbounded in the whole plane.

However, their more complex polynomial behaviour at small and intermediate
distances from the centre indicate that one can obtain also under certain conditions
a current distribution that is localized in a finite region, where the current density
vanishes near the boundary. It would be interesting in future to explore how far such
a region may extend. Unfortunately, it is difficult to study this question by using
quasi-polynomial solutions of orders higher than one because of its complexity, so we
shall use in the following paper (Part 2) another, simpler, semi-analytical approach
to the problem.

We are very grateful to R. E. Grundy for useful advice on solving equations of the
form discussed in § 2.1. V. S. Titov thanks very much E. R. Priest for warm hospitality
during his stay at the University of St Andrews and Y. R. Romanovsky for helpful
discussions. We are delighted to acknowledge financial support from the UK Particle
Physics and Astronomy Research Council. The contribution of V. S. Titov to this
work was also partially supported by the grant No. 96-02-18139a of the Russian
Foundation for Basic Research.

Appendix A. Determination of the non-unidirectional part of the flow: the
piecewise analytical function f1(x)

As was shown in § 2.2 the expression for f1(x)

f1(x) =
1

2

∫ x

0

(x− ξ)2 h̃(ξ) dξ + c4
1
2
x2 + h̃′′(0) x+ 1

4
h̃′(0), (A 1)

where h̃(0) is a piecewise analytical function (2.14). Some of the arbitrary constants
entering into this function are determined from the required continuity and oddness
of h̃(x), which in turn provide the necessary smoothness and evenness of f1(x). These
requirements are applied at the point x = 0 and yield f′1(0) = 0 and f′′′1 (0) = 0 or,
after using (2.17) and the third derivative of (A 1), they give

h̃′′(0) = 0 and h̃(0) = 0. (A 2)
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So the former equation determines a linear relation between the constants c1
i , i = 1..3,

while the latter simply yields

c1
3 = 0.

The continuity of h̃(x) and hence of f′′′1 (x) at the points x1 and x2 requires

c1
1 u1(x1)

2 + c1
2 u2(x1)

2 = c2
1 u1(x1)

2 + c2
2 u2(x1)

2 + c2
3 u1(x1) u2(x1), (A 3)

c2
1 u1(x2)

2 + c2
2 u2(x2)

2 + c2
3 u1(x2) u2(x2) = c3

2 u2(x2)
2. (A 4)

In (A 4) we have also used the requirement (ii) about f1(x) vanishing at infinity
(mentioned in § 2.2), which means automatically that h̃(x) also vanishes there and
therefore one needs to put

c3
1 = 0.

Also, to have exponential rather than power-law decay of h̃(x) at infinity, we put

c3
3 = 0.

The same asymptotic requirement (ii) leads after expanding (x − ξ)2 in the integral
term of (A 1) to three additional conditions, which may be written briefly as∫ ∞

0

h̃(ξ) dξ + c4 = 0, (A 5)

−
∫ ∞

0

ξ h̃(ξ) dξ + h̃′′(0) = 0, (A 6)∫ ∞
0

ξ2 h̃(ξ) dξ + 1
2
h̃′(0) = 0. (A 7)

One can consider the above relationships (A 2)–(A 7) as a linear system of equations
for the constants cij , c4, i, j = 1, 2, 3, when h̃ is replaced by (2.14). These equations
are generally independent, so they determine nine of the constants, while the tenth
remains free. However, it will be determined later by a normalization condition
requiring an appropriate coefficient in the logarithmic asymptotics of the function
f0(x) (see Appendix B). Thus one can indeed construct a two-parameter family of
solutions for equation (2.10) with the necessary asymptotic and smoothness properties
(ii) and (iii). The corresponding parameters in this family are the coordinates x1 and
x2 of the points where smoothness of the stream function breaks down in its fourth
derivatives.

Note also that one can construct in a similar way even smoother solutions by
an appropriate increase of the number of such points. This is because introducing
an extra such point brings three additional arbitrary constants, so that the resulting
freedom in the determination of the constants is enough to make both h̃(x) and h̃′(x)
continuous not only at this new point but also at one of the previous points.

Appendix B. Green’s function for unidirectional visco-resistive inertialess
flows

It was shown in §2.2 that the required Green’s function G(ξ, x) must be a solution
of the equation

x2 d2g

dx2
+ x

dg

dx
=

d4g

dx4
+ δ(x− ξ) (B 1)
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with logarithmic asymptotics at large |x|. It is promising to seek such a solution with
the function F(x) (2.4) satisfying equation (2.7). Indeed, if our equation had constant

coefficients, we could then simply take 1
2
πF(x−ξ)/Γ

(
3
4

)2
as a Green’s function, using

the translational symmetry and the proper asymptotic behaviour of F(x). Since the
coefficients are not constant, however, one can only claim that there is a solution
G(ξ, x) of (B 1) such that

G(0, x) = 1
2
πF(x)

/
Γ
(

3
4

)2
. (B 2)

Nevertheless, this fact gives us the hope that for any other ξ one can indeed construct
G(ξ, x) with the necessary asymptotic behaviour.

Let us consider now this problem systematically, noticing first that any solution of
(B 1) may be sought in the form

g(ξ, x) =

4∑
i=1

Ci(ξ, x) gi(x), (B 3)

where the four functions gi(x) are functionally independent solutions of the homoge-
neous equation (2.3) and the coefficients Ci(ξ, x) are new unknowns to be determined
by the method of variation of parameters. According to this method, we substitute
(B 3) into (B 1) and impose the following constraints on Ci(ξ, x):

4∑
i=1

dCi
dx

dkgi
dxk

= 0, k = 0, 1, 2, (B 4)

4∑
i=1

dCi
dx

d3gi

dx3
= −δ(x− ξ). (B 5)

These form a linear system of four equations for the four derivatives dCi/dx
which can be found in a standard way. Then, integrating the corresponding expres-
sions over x, one can find the functions Ci(ξ, x) themselves. How far this general
procedure is successful depends on the particular choice of solutions gi(x). It is
useful to choose them as smooth as possible, since the system (B 4)–(B 5) con-
tains derivatives of third order. So our previous choice of particular solutions for
equation (2.3) based on the modified Bessel functions I1/4(x

2/4) and K1/4(x
2/4)

(see (2.11)–(2.13)) is not good enough for our present purposes, since they are
not smooth enough at x = 0. The analysis shows, however, that one can ob-
tain the desired result, using the function I−1/4(x

2/4) instead of K1/4(x
2/4), so

that

g1 =

∫ x

0

h1 dx, g2 =

∫ x

0

h2 dx, g3 =

∫ x

0

h3 dx, g4 = 1, (B 6)

h1 = u2
1, h2 = u2

2, h3 = u1u2 sign x, (B 7)

u1 = |x|1/2 I1/4

(
x2/4

)
, u2 = |x|1/2 I−1/4

(
x2/4

)
. (B 8)

All of the functions gi(x) here are smooth everywhere due to the smoothness of the
functions hi(x) which behave as shown in figure 6.

Solving equations (B 4)–(B 5) is significantly simplified if one transforms d3gi/dx
3

so as to decrease the order of the derivatives of u1 and u2: this can be done by
using (B 6)–(B 8) and taking into account the fact that u1 and u2 satisfy the parabolic
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Figure 6. Smooth even, h1(x) and h2(x), and odd, h3(x), functions used in the expression for the
Green’s function (B 14).

cylinder equation

d2u

dx2
− x2

4
u = 0. (B 9)

We thereby derive from (B 4)–(B 5)

dC1

dx
= −h2(x)

2W 2
δ(x− ξ), (B 10)

dC2

dx
= −h1(x)

2W 2
δ(x− ξ), (B 11)

dC3

dx
=
h3(x)

W 2
δ(x− ξ), (B 12)

dC4

dx
= (h2(x) g1(x) + h1(x) g2(x)− 2h3(x) g3(x))

δ(x− ξ)

2W 2
, (B 13)

where W = u2 du1/dx−u1 du2/dx is the Wronskian. For the functions u1 and u2 given
by (B 8) and satisfying (B 9), W is constant and as x→ 0 they yield the value

W = 2

√
2

π
.

Now the coefficients Ci(ξ, x) can easily be found by integrating these equations, and
substituting them into (B 3), to obtain

g(ξ, x) = 1
32
π2 sign(ξ − x) (h2(ξ) g1(x) + h1(ξ) g2(x)− 2h3(ξ) g3(x)

−h2(ξ) g1(ξ)− h1(ξ) g2(ξ) + 2h3(ξ) g3(ξ))

+a1(ξ) g1(x) + a2(ξ) g2(x) + a3(ξ) g3(x) + a4(ξ).

Here ai(ξ), i = 1, . . . , 4, are arbitrary constants of integration of (B 10)–(B 13). They
depend parametrically on ξ and may be chosen to make g(ξ, x) the Green’s function.
One can verify that the functions

a1(ξ) = a2(ξ) = − 1
32
π2 , a3(ξ) = 1

32
π2 (h1(ξ) + h2(ξ))

enable us to obtain the logarithmic asymptotics for g(ξ, x) as |x| → ∞, while

a4(ξ) = 1
32
π2 (h3(ξ) g1(ξ) + h3(ξ) g2(ξ)− (h1(ξ) + h2(ξ)) g3(ξ))
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makes g(ξ, x) decay like 1/ξ as ξ → ∞. Thus the resulting g(ξ, x) ≡ G(ξ, x) may be
written after simple transformations as

G(ξ, x) = 1
32
π2 [(h2(ξ) sign (ξ − x)− h3(ξ)) (g1(x)− g1(ξ))

+ (h1(ξ) sign(ξ − x)− h3(ξ)) (g2(x)− g2(ξ))

+ (h1(ξ) + h2(ξ)− 2h3(ξ) sign(ξ − x)) (g3(x)− g3(ξ))] . (B 14)

Asymptotically this expression becomes as |x| → ∞

G(ξ, x)→ 1
8
|ξ|
[
I1/4

(
1
4
ξ2
)

+ I−1/4

(
1
4
ξ2
)]
K1/4

(
1
4
ξ2
)

log |x|,

where we have used the relationship

I−1/4(X)− I1/4(X) =

√
2

π
K1/4(X).

So, to obtain the asymptotics of the ideal solution, i.e. 1
2

log |x|, for the unidirec-
tional part of the above solution (2.18), one needs to impose on f1(x) the following
normalization condition:∫ ∞

0

ξ
[
I1/4

(
1
4
ξ2
)

+ I− 1
4

(
1
4
ξ2
)]
K1/4

(
1
4
ξ2
)
f′′1 (ξ) dξ = 1, (B 15)

where the evenness of f′′1 (ξ) and the asymptotic expression for G(ξ, x) have been used
to reduce the integral (2.18). This condition determines an additional linear equation
for the free constants entering into the expression for f1(x) (see (2.14)–(2.17)). Note
also that, as expected, G(0, x) may be transformed with the help of (B 15) to the form
(B 2).

For the unidirectional part of the current density (2.20) it is useful to determine an
explicit expression, which is obtained by substituting (2.18) into (2.20). After using
(B 14) it becomes

j0(x) =
1

2
−
∫ +∞

−∞
f′′1 (ξ)L(ξ, x) dx,

where

L(ξ, x) = 1
16
π2 x [h3(x) (h1(ξ) + h2(ξ))− h3(ξ) (h1(x) + h2(x))

+sign(ξ − x) (h1(x) h2(ξ) + h1(ξ) h2(x)− 2h3(x) h3(ξ))] .

Appendix C. Unidirectional flows with a uniform forced vorticity
As mentioned in § 2.1 the most general unidirectional flows are described by

x2 d2f

dx2
+ x

df

dx
=

d4f

dx4
+ c, (C 1)

where the arbitrary constant c determines a spatially uniform distribution of forced
vorticity. We show here that its presence does not change the conclusions of § 2.1.

Applying again, as in Appendix B, the method of variation of parameters, we seek
a particular solution of (C 1) as

f(x) =

4∑
i=1

Ci(x) gi(x), (C 2)
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where gi(x) are given by (B 6)–(B 8). After substituting (C 2) into (C 1) one can derive
instead of (B 10)–(B 13) the following expressions for the parameters:

C1 = −c g2(x)

2W 2
, C2 = −c g1(x)

2W 2
, C3 =

c g3(x)

2W 2
,

C4 =
c

2W 2

∫ x

0

(h2(ξ) g1(ξ) + h1(ξ) g2(ξ)− 2h3(ξ) g3(ξ)) dξ

≡ c

2W 2

(
g1(x) g2(x)− g3(x)2

)
.

So we obtain now from (C 2) an explicit form of the particular solution for (C 1),
namely

f(x) = − c

2W 2
g1(x) g2(x). (C 3)

Since |gi(x)| ∼ ex
2/2/x2 as |x| → ∞, i = 1, 2, 3, the asymptotics of (C 3) dominates

any solution of (C 1) with c = 0, so that its absolute value exponentially grows at
infinity. Thus, if c 6= 0, the unidirectional flows do not possess the desired logarithmic
asymptotics – it may be achieved only in the opposite case described in § 2.1.
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